Module glai.ai

Expand source code
from .auto_ai import AutoAI
from .easy_ai import EasyAI


# Making certain symbols available when the package is imported
__all__ = ['AutoAI', 'EasyAI']
#print(f"Initializing ai package, available classes: {__all__}")

Sub-modules

glai.ai.auto_ai
glai.ai.easy_ai

Classes

class AutoAI (name_search: Optional[str] = None, quantization_search: Optional[str] = None, keyword_search: Optional[str] = None, search_only_downloaded_models: bool = False, max_total_tokens: int = 1500, model_db_dir: Optional[str] = None)

Initialize the AutoAI class for super easy LLM AI generation.

Searches for a model based on name/quantization/keyword. Downloads model and sets up LlamaAI.

Args

name_search
Name of model to search for. Optional. Default None.
quantization_search
Quantization of model to search for. Optional. Default None.
keyword_search
Keyword of model to search for. Optional. Default None.
new_tokens
New token length for LlamaAI model. Default 1500.
max_input_tokens
Max input tokens for LlamaAI model. Default 900.
model_db_dir
Directory to store model data in. Defaults to global packages model directory.

Attributes

model_db
ModelDB object. - represents the database of models, has useful functions for searching and importing models.
model_data
ModelData object. - represents the data of the model, has useful functions for creating, downloading and loading the model data and gguf.
ai
LlamaAI object. - represents the LlamaAI model, a wrapper for llama llm and tokenizer models quantized to gguf format. Has methods for adjusting generation and for generating.
msgs
AIMessages object. - represents the AIMessages a collection of AIMessage objects, has useful functions for adding and editing messages and can be printed to string.
Expand source code
class AutoAI:
    """
    Initialize the AutoAI class for super easy LLM AI generation.

    Searches for a model based on name/quantization/keyword. 
    Downloads model and sets up LlamaAI.

    Args:
        name_search: Name of model to search for. Optional. Default None.
        quantization_search: Quantization of model to search for. Optional. Default None.
        keyword_search: Keyword of model to search for. Optional. Default None.
        new_tokens: New token length for LlamaAI model. Default 1500.
        max_input_tokens: Max input tokens for LlamaAI model. Default 900.
        model_db_dir: Directory to store model data in. Defaults to global packages model directory.

    Attributes:
        model_db: ModelDB object. - represents the database of models, has useful functions for searching and importing models.
        model_data: ModelData object. - represents the data of the model, has useful functions for creating, downloading and loading the model data and gguf.
        ai: LlamaAI object. - represents the LlamaAI model, a wrapper for llama llm and tokenizer models quantized to gguf format. Has methods for adjusting generation and for generating.
        msgs: AIMessages object. - represents the AIMessages a collection of AIMessage objects, has useful functions for adding and editing messages and can be printed to string.
        
    """
    def __init__(self, 
                 name_search: Optional[str] = None,
                 quantization_search: Optional[str] = None,
                 keyword_search: Optional[str] = None,
                 search_only_downloaded_models:bool = False,
                 max_total_tokens: int = 1500,
                 model_db_dir:Optional[str] = None,
                 ) -> None:

        self.model_db = ModelDB(model_db_dir=model_db_dir, copy_verified_models=True)
        self.model_data: ModelData = self.model_db.find_model(
            name_search, quantization_search, keyword_search, search_only_downloaded_models
        )
        self.model_data.download_gguf()
        self.ai = LlamaAI(
            self.model_data.gguf_file_path, max_tokens=max_total_tokens
        )
        print(f"Using model: {self.model_data}")
        self.msgs: AIMessages = AIMessages(
            self.model_data.user_tags, self.model_data.ai_tags, self.model_data.system_tags
        )
    
    def generate_from_messages(self, stop_at:str = None, include_stop_str:bool = True) -> AIMessage:
        prompt = self.msgs.text()
        ai_message = self.generate_from_literal_string(prompt, stop_at=stop_at, include_stop_str=include_stop_str)
        self.msgs.add_ai_message(ai_message)
        return ai_message
    
    def generate_from_literal_string(
        self, 
        prompt: str,
        stop_at:str = None,
        include_stop_str:bool = True
    ) -> AIMessage:
        """
        Generate text from a prompt using the LlamaAI model.

        Args:
            prompt: Prompt text to generate from.

        Returns:
            Generated text string.
        """
        return self.ai.infer(
            prompt, only_string=True, stop_at_str=stop_at, include_stop_str=include_stop_str
        )

    def generate(
        self,
        user_message: str,
        ai_message_tbc: Optional[str] = None,
        stop_at:Optional[str] = None,
        include_stop_str:bool = True,
        system_message: Optional[str] = None
    ) -> AIMessage:
        """
        Generate an AI response to a user message.

        Args:
            user_message: User message text.
            ai_message_tbc: Optional text to prepend.
            stop_at: Optional string to stop generation at.
            include_stop_str: Whether to include the stop string in the generated message.
            system_message: Optional system message to include at the start, not all models support this.
            If you provide system message to a model that doesn't support it, it will be ignored.
            You can check if a model supports system messages by checking the model_data.has_system_tags() method.
        Returns:
            Generated AIMessage object.
        """
        generation_messages = AIMessages(user_tags=self.model_data.user_tags, ai_tags=self.model_data.ai_tags, system_tags=self.model_data.system_tags)
        generation_messages.reset_messages()
        if self.model_data.has_system_tags():
            if system_message is not None:
                generation_messages.set_system_message(system_message)
            else:
                print("WARNING: Model seeps to support system messages, but no system message provided.")
        generation_messages.add_user_message(user_message)


        if ai_message_tbc is not None:
            generation_messages.add_message(
                ai_message_tbc, 
                self.msgs.ai_tag_open, 
                ""
            )
        print(f"Promt: {generation_messages.text()}")
        
        generated = self.generate_from_literal_string(generation_messages.text(), stop_at=stop_at, include_stop_str=include_stop_str)

        if ai_message_tbc is not None:
            generation_messages.edit_last_message(
                ai_message_tbc + generated,
                self.msgs.ai_tag_open,
                self.msgs.ai_tag_close
            )
        else:
            generation_messages.add_ai_message(generated)

        print(f"Generated: {generation_messages.get_last_message().text()}")
        output = generation_messages.get_last_message()
        return output

    def count_tokens(
        self,
        user_message: str,
        ai_message_tbc: Optional[str] = None
    ) -> int:
        """
        Count the number of tokens in a generated message.

        Args:
            user_message: User message text.
            ai_message_tbc: Optional text to prepend.

        Returns:
            Number of tokens in generated message.
        """
        generation_messages = AIMessages()
        generation_messages.reset_messages()
        generation_messages.add_user_message(user_message)

        if ai_message_tbc is not None:
            generation_messages.add_message(
                ai_message_tbc, 
                self.msgs.ai_tag_open, 
                ""
            )
        return self.ai.count_tokens(generation_messages.text())
    
    def is_within_input_limit(
        self,
        user_message: str,
        ai_message_tbc: Optional[str] = None
        ) -> bool:
        """
        Check if the generated message is within the input limit.

        Args:
            user_message: User message text.
            ai_message_tbc: Optional text to prepend.

        Returns:
            True if within input limit, False otherwise.
        """
        return self.ai.is_within_input_limit(self.count_tokens(user_message, ai_message_tbc))

Methods

def count_tokens(self, user_message: str, ai_message_tbc: Optional[str] = None) ‑> int

Count the number of tokens in a generated message.

Args

user_message
User message text.
ai_message_tbc
Optional text to prepend.

Returns

Number of tokens in generated message.

Expand source code
def count_tokens(
    self,
    user_message: str,
    ai_message_tbc: Optional[str] = None
) -> int:
    """
    Count the number of tokens in a generated message.

    Args:
        user_message: User message text.
        ai_message_tbc: Optional text to prepend.

    Returns:
        Number of tokens in generated message.
    """
    generation_messages = AIMessages()
    generation_messages.reset_messages()
    generation_messages.add_user_message(user_message)

    if ai_message_tbc is not None:
        generation_messages.add_message(
            ai_message_tbc, 
            self.msgs.ai_tag_open, 
            ""
        )
    return self.ai.count_tokens(generation_messages.text())
def generate(self, user_message: str, ai_message_tbc: Optional[str] = None, stop_at: Optional[str] = None, include_stop_str: bool = True, system_message: Optional[str] = None) ‑> AIMessage

Generate an AI response to a user message.

Args

user_message
User message text.
ai_message_tbc
Optional text to prepend.
stop_at
Optional string to stop generation at.
include_stop_str
Whether to include the stop string in the generated message.
system_message
Optional system message to include at the start, not all models support this.

If you provide system message to a model that doesn't support it, it will be ignored. You can check if a model supports system messages by checking the model_data.has_system_tags() method.

Returns

Generated AIMessage object.

Expand source code
def generate(
    self,
    user_message: str,
    ai_message_tbc: Optional[str] = None,
    stop_at:Optional[str] = None,
    include_stop_str:bool = True,
    system_message: Optional[str] = None
) -> AIMessage:
    """
    Generate an AI response to a user message.

    Args:
        user_message: User message text.
        ai_message_tbc: Optional text to prepend.
        stop_at: Optional string to stop generation at.
        include_stop_str: Whether to include the stop string in the generated message.
        system_message: Optional system message to include at the start, not all models support this.
        If you provide system message to a model that doesn't support it, it will be ignored.
        You can check if a model supports system messages by checking the model_data.has_system_tags() method.
    Returns:
        Generated AIMessage object.
    """
    generation_messages = AIMessages(user_tags=self.model_data.user_tags, ai_tags=self.model_data.ai_tags, system_tags=self.model_data.system_tags)
    generation_messages.reset_messages()
    if self.model_data.has_system_tags():
        if system_message is not None:
            generation_messages.set_system_message(system_message)
        else:
            print("WARNING: Model seeps to support system messages, but no system message provided.")
    generation_messages.add_user_message(user_message)


    if ai_message_tbc is not None:
        generation_messages.add_message(
            ai_message_tbc, 
            self.msgs.ai_tag_open, 
            ""
        )
    print(f"Promt: {generation_messages.text()}")
    
    generated = self.generate_from_literal_string(generation_messages.text(), stop_at=stop_at, include_stop_str=include_stop_str)

    if ai_message_tbc is not None:
        generation_messages.edit_last_message(
            ai_message_tbc + generated,
            self.msgs.ai_tag_open,
            self.msgs.ai_tag_close
        )
    else:
        generation_messages.add_ai_message(generated)

    print(f"Generated: {generation_messages.get_last_message().text()}")
    output = generation_messages.get_last_message()
    return output
def generate_from_literal_string(self, prompt: str, stop_at: str = None, include_stop_str: bool = True) ‑> AIMessage

Generate text from a prompt using the LlamaAI model.

Args

prompt
Prompt text to generate from.

Returns

Generated text string.

Expand source code
def generate_from_literal_string(
    self, 
    prompt: str,
    stop_at:str = None,
    include_stop_str:bool = True
) -> AIMessage:
    """
    Generate text from a prompt using the LlamaAI model.

    Args:
        prompt: Prompt text to generate from.

    Returns:
        Generated text string.
    """
    return self.ai.infer(
        prompt, only_string=True, stop_at_str=stop_at, include_stop_str=include_stop_str
    )
def generate_from_messages(self, stop_at: str = None, include_stop_str: bool = True) ‑> AIMessage
Expand source code
def generate_from_messages(self, stop_at:str = None, include_stop_str:bool = True) -> AIMessage:
    prompt = self.msgs.text()
    ai_message = self.generate_from_literal_string(prompt, stop_at=stop_at, include_stop_str=include_stop_str)
    self.msgs.add_ai_message(ai_message)
    return ai_message
def is_within_input_limit(self, user_message: str, ai_message_tbc: Optional[str] = None) ‑> bool

Check if the generated message is within the input limit.

Args

user_message
User message text.
ai_message_tbc
Optional text to prepend.

Returns

True if within input limit, False otherwise.

Expand source code
def is_within_input_limit(
    self,
    user_message: str,
    ai_message_tbc: Optional[str] = None
    ) -> bool:
    """
    Check if the generated message is within the input limit.

    Args:
        user_message: User message text.
        ai_message_tbc: Optional text to prepend.

    Returns:
        True if within input limit, False otherwise.
    """
    return self.ai.is_within_input_limit(self.count_tokens(user_message, ai_message_tbc))
class EasyAI (**kwds)

EasyAI provides a simple interface for LlamaAI based AI using quantized GGUF models for inference on CPU.

Initialization: Can be intialized with no arguments, followed by following configuration methods, step by step, all in one or using a dict:

Step by step call these with appropriate arguments:

1. `self.load_model_db(model_db_dir: str = MODEL_EXAMPLES_DB_DIR)`
2. One of the following with necessary args: <code>self.model\_data\_from\_url()</code> or <code>self.model\_data\_from\_file()</code> or <code>self.find\_model\_data()</code>
3. `self.load_ai(max_total_tokens: int = 200)`

All in one:

```python
self.configure(
    model_db_dir:str = MODEL_EXAMPLES_DB_DIR, 
    model_url: Optional[str] = None, 
    model_gguf_path: Optional[str] = None, 
    name_search: Optional[str] = None, 
    quantization_search: Optional[str] = None, 
    keyword_search: Optional[str] = None, 
    max_total_tokens: int = 200, 
    )
```

Or with a dictionary with the following keys:
- model_db_dir: Directory to store model data in. Defaults to MODEL_EXAMPLES_DB_DIR.
- model_url: URL of model to configure with. Automatically downloads and builds as needed. (Optional)
- name_search: Name of model to search for in the model db dir.(Optional)
- quantization_search: Quantization of model to search for in the model db dir..(Optional)
- keyword_search: Keyword of model to search for in the model db dir..(Optional)
- model_gguf_path: Path to GGUF file of model to configure with.(Optional, not a recommended method, doesn't preserve download url)
- max_total_tokens: Max tokens to be processed by LlamaAI model. (Defaults to 200, set to around 500-1k for regular use)

Attributes

model_db
ModelDB for searching/loading models
messages
AIMessages for tracking conversation
model_data
ModelData of selected model
lai
LlamaAI instance for generating text

Methods

DB: load_model_db: Load ModelDB from directory ModelData: find_model_data: Search model DB for ModelData model_data_from_url: Get ModelData from URL model_data_from_file: Load ModelData from file Load to memory: load_ai: Create LlamaAI instance from ModelData Inference: infer: Generate AI response to user message

EasyAI handles loading models, setting up messages/LLamaAI, and generating responses. It provides a simple interface to using LLama

Expand source code
class EasyAI:
    """
    EasyAI provides a simple interface for LlamaAI based AI using quantized GGUF models
    for inference on CPU.
    
    Initialization:
    Can be intialized with no arguments, followed by following configuration methods, step by step, all in one or using a dict:\n
    Step by step call these with appropriate arguments:\n
        1. `self.load_model_db(model_db_dir: str = MODEL_EXAMPLES_DB_DIR)`
        2. One of the following with necessary args: `self.model_data_from_url()` or `self.model_data_from_file()` or `self.find_model_data()`
        3. `self.load_ai(max_total_tokens: int = 200)`
    All in one:\n
        ```python
        self.configure(
            model_db_dir:str = MODEL_EXAMPLES_DB_DIR, 
            model_url: Optional[str] = None, 
            model_gguf_path: Optional[str] = None, 
            name_search: Optional[str] = None, 
            quantization_search: Optional[str] = None, 
            keyword_search: Optional[str] = None, 
            max_total_tokens: int = 200, 
            )
        ```
        
        Or with a dictionary with the following keys:
        - model_db_dir: Directory to store model data in. Defaults to MODEL_EXAMPLES_DB_DIR.
        - model_url: URL of model to configure with. Automatically downloads and builds as needed. (Optional)
        - name_search: Name of model to search for in the model db dir.(Optional)
        - quantization_search: Quantization of model to search for in the model db dir..(Optional)
        - keyword_search: Keyword of model to search for in the model db dir..(Optional)
        - model_gguf_path: Path to GGUF file of model to configure with.(Optional, not a recommended method, doesn't preserve download url)
        - max_total_tokens: Max tokens to be processed by LlamaAI model. (Defaults to 200, set to around 500-1k for regular use)

    Attributes:
        model_db: ModelDB for searching/loading models
        messages: AIMessages for tracking conversation 
        model_data: ModelData of selected model
        lai: LlamaAI instance for generating text

    Methods:
        DB:
            load_model_db: Load ModelDB from directory
        ModelData:
            find_model_data: Search model DB for ModelData
            model_data_from_url: Get ModelData from URL
            model_data_from_file: Load ModelData from file
        Load to memory:
            load_ai: Create LlamaAI instance from ModelData
        Inference:
            infer: Generate AI response to user message

    EasyAI handles loading models, setting up messages/LLamaAI,
    and generating responses. It provides a simple interface to using
    LLama
    """
    def __init__(self, **kwds) -> None:
        self.model_db: ModelDB = None
        self.messages: Optional[AIMessages] = None
        self.model_data: Optional[ModelData] = None
        self.ai: Optional[LlamaAI] = None
        if kwds:
            self.configure(**kwds)

    def configure(self,
                  model_db_dir: Optional[str] = None,
                  model_url: Optional[str] = None,
                  model_gguf_path: Optional[str] = None,
                  name_search: Optional[str] = None,
                  quantization_search: Optional[str] = None,
                  keyword_search: Optional[str] = None,
                  search_only_downloaded: bool = False,
                  max_total_tokens: int = 200,
                                            ) -> None:
        """
        Configure EasyAI with model data.

        Configures EasyAI with model data from given URL, GGUF file path, or model name/quantization/keyword.
        Sets model data attribute.

        Args:
            model_db_dir: Directory to store model data in. If none is provided global db is used.This is preferred for most use cases.
            max_total_tokens: Max tokens to be processed (input+generation) by LlamaAI model. (Defaults to 200, set to around 500-1k for regular use)
            
            Provide at least one of these args to fetch ModelData: 
            ---
            model_url: URL of model to configure with. Automatically downloads and builds as needed. (Optional)
            name_search: Name of model to search for in the model db dir.(Optional)
            quantization_search: Quantization of model to search for in the model db dir..(Optional)
            keyword_search: Keyword of model to search for in the model db dir..(Optional)
            model_gguf_path: Path to GGUF file of model to configure with.(Optional, not a recommended method, doesn't preserve download url)
            ---

        Raises:
            Exception: If no model DB loaded.
            Exception: If no model data found.

        """
        if model_db_dir is None:
            print(f"Using provided verified models DB, files at {VERIFIED_MODELS_DB_DIR}")
        self.load_model_db(model_db_dir)
        if model_url is not None:
            self.model_data_from_url(model_url)
        elif model_gguf_path is not None:
            self.model_data_from_file(model_gguf_path)
        elif name_search is not None or quantization_search is not None or keyword_search is not None:
            self.find_model_data(name_search, quantization_search, keyword_search, search_only_downloaded)
        else:
            raise Exception("Can't find model data. Please provide a model URL, GGUF file path, or model name/quantization/keyword.")
        
        self.load_ai(max_total_tokens)
    


            
            


    def load_model_db(self, db_dir:Optional[str] = None, copy_verified_models=True) -> None:
        """
        Load ModelDB from given directory.

        Args:
            db_dir: Directory to load ModelDB from.
            copy_examples: Whether to copy example GGUF files to db_dir if db_dir is empty.
        """
        self.model_db = ModelDB(model_db_dir=db_dir, copy_verified_models=copy_verified_models)

    def import_verified_models_to_db(self, model_name_quantization_list:Optional[list[Union[list,set,tuple]]] = None) -> None:
        """
        Import verified models to new ModelDB.

        Imports verified models from global verified models DB to new ModelDB. If model_name_quantization_list is provided, only models in the list are imported.

        Args:
            model_name_quantization_list: List of tuples of model name and quantization to import. If None, all models are imported.
        """
        if self.model_db is None:
            raise Exception("No model DB loaded. Use load_model_db() first.")
        if model_name_quantization_list is not None:
            for n_q_data in model_name_quantization_list:
                name = n_q_data[0]
                quantization = n_q_data[1]
                self.model_db.import_verified_model(name, quantization, None, True)
        else:
            self.model_db.import_verified_model(None, None, None, True)
        
    def find_model_data(self,
                        model_name: Optional[str] = None,  
                        quantization: Optional[str] = None,
                        keyword: Optional[str] = None,
                        only_downloaded: bool = False) -> ModelData:
        """
        Find model data in database that matches given criteria.

        Searches model database for model data matching the given model name, 
        quantization, and/or keyword. Any parameters left as None are not used  
        in the search.

        Args:
            model_name: Name of model to search for.
            quantization: Quantization of model to search for.
            keyword: Keyword of model to search for.

        Returns:
            ModelData object if a match is found, else None.
        """
        if self.model_db is None:
            raise Exception("No model DB loaded. Use load_model_db() first.")
        model_data = self.model_db.find_model(model_name, quantization, keyword, only_downloaded)
        self.model_data = model_data
        return model_data

    def model_data_from_url(self,
                            url: str,
                            user_tags: Tuple[str, str] = ("", ""),
                            ai_tags: Tuple[str, str] = ("", ""),
                            description: Optional[str] = None,
                            keywords: Optional[str] = None,
                            save: bool = True) -> None:
        """
        Get model data for URL, downloading model if needed.

        Checks if model data already exists for the given URL. If not, downloads
        the model from the URL and creates new model data. Sets model data attribute.

        Args:
            url: URL of model to get data for.
            user_tags: User tags to assign if creating new model data. 
            ai_tags: AI tags to assign if creating new model data.
            description: Optional description for new model data.
            keyword: Optional keyword for new model data.
            save: Whether to save new model data JSON file.
        """
        if self.model_db is None:
            raise Exception("No model DB loaded. Use load_model_db() first.")
        print(f"Trying to get model data from url: {url}")
        print(f"Checking if model data already exists...")
        model_data = self.model_db.get_model_by_url(url)
        if model_data is None:
            print(f"Model data not found. Creating new model data...")
            model_data = ModelData(url, self.model_db.gguf_db_dir, user_tags, ai_tags, description, keywords)
            print(f"Created model data: {model_data}")
        else:
            print(f"Found model data: {model_data}")
        if save:
            model_data.save_json()
        self.model_data = model_data

    def model_data_from_file(self,
                             gguf_file_path: str,
                             user_tags: Tuple[str, str] = ("", ""),
                             ai_tags: Tuple[str, str] = ("", ""),
                             description: Optional[str] = None,
                             keyword: Optional[str] = None,
                             save: bool = False) -> None:
        """
        Get model data from local GGUF file.

        Loads model data from the given local GGUF file path. Sets model data attribute.

        Args:
            gguf_file_path: Path to GGUF file.
            user_tags: User tags to assign to model data.
            ai_tags: AI tags to assign to model data.
            description: Optional description for model data.
            keyword: Optional keyword for model data.
            save: Whether to save model data JSON file.
        """
        if self.model_db is None:
            raise Exception("No model DB loaded. Use load_model_db() first.")
        model_data = ModelData.from_file(gguf_file_path, self.model_db.gguf_db_dir, user_tags, ai_tags, description, keyword)
        if save:
            model_data.save_json()
        self.model_data = model_data

    def _load_messages(self) -> None:
        """
        Load AIMessages using tags from model data.

        Uses user_tags and ai_tags from loaded model data to initialize AIMessages object. 
        Sets messages attribute.

        Raises:
            Exception: If no model data loaded yet.
        """
        if self.model_data is None:
            raise Exception("No model data loaded. Use find_model_data(), get_model_data_from_url(), or get_model_data_from_file() first.")
        self.messages = AIMessages(user_tags=self.model_data.user_tags, ai_tags=self.model_data.ai_tags, system_tags=self.model_data.system_tags)

    def load_ai(self,
                max_total_tokens: int = 200,) -> None:
        """
        Load LlamaAI model from model data.

        Downloads model file from model data URL if needed. Initializes LlamaAI with model and sets lai attribute.

        Args:
            max_total_tokens: Max tokens for LlamaAI model.
        Raises:
            Exception: If no model data or messages loaded yet.
        """
        self._load_messages()
        if self.messages is None:
            raise Exception("No messages loaded. Use load_messages() first.")
        if self.model_data is None:
            raise Exception("No model data loaded. Use find_model_data(), get_model_data_from_url(), or get_model_data_from_file() first.")
        self.model_data.download_gguf()
        self.ai = LlamaAI(self.model_data.model_path(), max_tokens=max_total_tokens)
        print(f"Loaded: {self.model_data}")

    def generate(self,
              user_message: str,
              ai_message_tbc: Optional[str] = None,
              stop_at:Optional[str]=None,
              include_stop_str:bool=True,
              system_message: Optional[str] = None
              ) -> AIMessage:
        """
        Generate AI response to user message.

        Runs user message through loaded LlamaAI to generate response. Allows prepending optional 
        content to AI response. Adds messages and returns generated AIMessage.

        Args:
            user_message: User message text.
            ai_message_tbc: Optional text to prepend to AI response.
            stop_at: Optional string to stop generation at.
            include_stop_str: Whether to include stop string in generated message.
            system_message: Optional system message to include at the start, not all models support this.
            If you provide system message to a model that doesn't support it, it will be ignored.
            You can check if a model supports system messages by checking the model_data.has_system_messages()

        Returns:
            Generated AIMessage object.

        Raises:
            Exception: If no AI or messages loaded yet.
        """
        if self.ai is None:
            raise Exception("No AI loaded. Use load_ai() first.")
        if self.messages is None:
            raise Exception("No messages loaded. Use load_ai() first.")
        self.messages.reset_messages()
        if self.model_data.has_system_tags():
            if system_message is not None:
                self.messages.set_system_message(system_message)
            else:
                print("WARNING: Model supports system messages, but no system message provided.")
        self.messages.add_user_message(user_message)
        print(f"Input to model: \n{self.messages.text()}")
        generated: str = ""
        if ai_message_tbc is not None:
            generated += ai_message_tbc
            self.messages.add_message(ai_message_tbc, self.model_data.get_ai_tag_open(), "")
        if stop_at is None:
            stop_at = self.messages.ai_tag_close if any([self.messages.ai_tag_close is None, self.messages.ai_tag_close == "", self.messages.ai_tag_close != " "]) else None
            include_stop_str = False
        generated += self.ai.infer(self.messages.text(), only_string=True, stop_at_str=stop_at, include_stop_str=include_stop_str)
        if ai_message_tbc is not None:
            self.messages.edit_last_message(generated,
                                            self.model_data.get_ai_tag_open(),
                                            self.model_data.get_ai_tag_close())
        else:
            self.messages.add_ai_message(generated)
        print(f"AI message: \n{self.messages.get_last_message()}")
        return self.messages.get_last_message()

    



    def count_tokens(
        self,
        user_message_text: str,
        ai_message_tbc: Optional[str] = None
    ) -> int:
        """
        Count the number of tokens in a generated message.

        Args:
            user_message_text: User message text.
            ai_message_tbc: Optional text to prepend.

        Returns:
            Number of tokens in generated message.
        """
        generation_messages = AIMessages()
        generation_messages.reset_messages()
        generation_messages.add_user_message(user_message_text)

        if ai_message_tbc is not None:
            generation_messages.add_message(
                ai_message_tbc, 
                self.messages.ai_tag_open, 
                ""
            )

        return self.ai.count_tokens(generation_messages.text())
    
    def is_within_context(self,
        prompt: str,
        ) -> bool:
        """
        Check if the generated message is within the input limit.

        Args:
            user_message_text: User message text.
            ai_message_tbc: Optional text to prepend.

        Returns:
            True if within input limit, False otherwise.
        """
        return self.ai.is_prompt_within_limit(prompt)
    
    def import_from_repo(self, hf_repo_url: str, user_tags: Tuple[str, str] = ("", ""), ai_tags: Tuple[str, str] = ("", ""), system_tags: Optional[Tuple[str, str]] = (None, None), keywords: Optional[str] = None, description: Optional[str] = None, replace_existing: bool = False) -> None:
        """
        Imports model data from HuggingFace model repo to current model DB. 

        Args:
            hf_repo_url: URL of model to import.
            user_tags: User tags to assign to model data.
            ai_tags: AI tags to assign to model data.
            system_tags: System tags to assign to model data.
            description: Optional description for model data.
            keyword: Optional keyword for model data.
            replace_existing: Whether to replace existing model data if found.

        Raises:
            Exception: If no model DB loaded yet.
        """



        self.model_db.import_models_from_repo(
            hf_repo_url=hf_repo_url,
            user_tags=user_tags,
            ai_tags=ai_tags,
            system_tags=system_tags,
            keywords=keywords,
            description=description,
            replace_existing=replace_existing,
        )

Methods

def configure(self, model_db_dir: Optional[str] = None, model_url: Optional[str] = None, model_gguf_path: Optional[str] = None, name_search: Optional[str] = None, quantization_search: Optional[str] = None, keyword_search: Optional[str] = None, search_only_downloaded: bool = False, max_total_tokens: int = 200) ‑> None

Configure EasyAI with model data.

Configures EasyAI with model data from given URL, GGUF file path, or model name/quantization/keyword. Sets model data attribute.

Args

model_db_dir
Directory to store model data in. If none is provided global db is used.This is preferred for most use cases.
max_total_tokens
Max tokens to be processed (input+generation) by LlamaAI model. (Defaults to 200, set to around 500-1k for regular use)

Provide at least one of these args to fetch ModelData:

model_url
URL of model to configure with. Automatically downloads and builds as needed. (Optional)
name_search
Name of model to search for in the model db dir.(Optional)
quantization_search
Quantization of model to search for in the model db dir..(Optional)
keyword_search
Keyword of model to search for in the model db dir..(Optional)
model_gguf_path
Path to GGUF file of model to configure with.(Optional, not a recommended method, doesn't preserve download url)

Raises

Exception
If no model DB loaded.
Exception
If no model data found.
Expand source code
def configure(self,
              model_db_dir: Optional[str] = None,
              model_url: Optional[str] = None,
              model_gguf_path: Optional[str] = None,
              name_search: Optional[str] = None,
              quantization_search: Optional[str] = None,
              keyword_search: Optional[str] = None,
              search_only_downloaded: bool = False,
              max_total_tokens: int = 200,
                                        ) -> None:
    """
    Configure EasyAI with model data.

    Configures EasyAI with model data from given URL, GGUF file path, or model name/quantization/keyword.
    Sets model data attribute.

    Args:
        model_db_dir: Directory to store model data in. If none is provided global db is used.This is preferred for most use cases.
        max_total_tokens: Max tokens to be processed (input+generation) by LlamaAI model. (Defaults to 200, set to around 500-1k for regular use)
        
        Provide at least one of these args to fetch ModelData: 
        ---
        model_url: URL of model to configure with. Automatically downloads and builds as needed. (Optional)
        name_search: Name of model to search for in the model db dir.(Optional)
        quantization_search: Quantization of model to search for in the model db dir..(Optional)
        keyword_search: Keyword of model to search for in the model db dir..(Optional)
        model_gguf_path: Path to GGUF file of model to configure with.(Optional, not a recommended method, doesn't preserve download url)
        ---

    Raises:
        Exception: If no model DB loaded.
        Exception: If no model data found.

    """
    if model_db_dir is None:
        print(f"Using provided verified models DB, files at {VERIFIED_MODELS_DB_DIR}")
    self.load_model_db(model_db_dir)
    if model_url is not None:
        self.model_data_from_url(model_url)
    elif model_gguf_path is not None:
        self.model_data_from_file(model_gguf_path)
    elif name_search is not None or quantization_search is not None or keyword_search is not None:
        self.find_model_data(name_search, quantization_search, keyword_search, search_only_downloaded)
    else:
        raise Exception("Can't find model data. Please provide a model URL, GGUF file path, or model name/quantization/keyword.")
    
    self.load_ai(max_total_tokens)
def count_tokens(self, user_message_text: str, ai_message_tbc: Optional[str] = None) ‑> int

Count the number of tokens in a generated message.

Args

user_message_text
User message text.
ai_message_tbc
Optional text to prepend.

Returns

Number of tokens in generated message.

Expand source code
def count_tokens(
    self,
    user_message_text: str,
    ai_message_tbc: Optional[str] = None
) -> int:
    """
    Count the number of tokens in a generated message.

    Args:
        user_message_text: User message text.
        ai_message_tbc: Optional text to prepend.

    Returns:
        Number of tokens in generated message.
    """
    generation_messages = AIMessages()
    generation_messages.reset_messages()
    generation_messages.add_user_message(user_message_text)

    if ai_message_tbc is not None:
        generation_messages.add_message(
            ai_message_tbc, 
            self.messages.ai_tag_open, 
            ""
        )

    return self.ai.count_tokens(generation_messages.text())
def find_model_data(self, model_name: Optional[str] = None, quantization: Optional[str] = None, keyword: Optional[str] = None, only_downloaded: bool = False) ‑> gguf_modeldb.model_data.ModelData

Find model data in database that matches given criteria.

Searches model database for model data matching the given model name, quantization, and/or keyword. Any parameters left as None are not used
in the search.

Args

model_name
Name of model to search for.
quantization
Quantization of model to search for.
keyword
Keyword of model to search for.

Returns

ModelData object if a match is found, else None.

Expand source code
def find_model_data(self,
                    model_name: Optional[str] = None,  
                    quantization: Optional[str] = None,
                    keyword: Optional[str] = None,
                    only_downloaded: bool = False) -> ModelData:
    """
    Find model data in database that matches given criteria.

    Searches model database for model data matching the given model name, 
    quantization, and/or keyword. Any parameters left as None are not used  
    in the search.

    Args:
        model_name: Name of model to search for.
        quantization: Quantization of model to search for.
        keyword: Keyword of model to search for.

    Returns:
        ModelData object if a match is found, else None.
    """
    if self.model_db is None:
        raise Exception("No model DB loaded. Use load_model_db() first.")
    model_data = self.model_db.find_model(model_name, quantization, keyword, only_downloaded)
    self.model_data = model_data
    return model_data
def generate(self, user_message: str, ai_message_tbc: Optional[str] = None, stop_at: Optional[str] = None, include_stop_str: bool = True, system_message: Optional[str] = None) ‑> AIMessage

Generate AI response to user message.

Runs user message through loaded LlamaAI to generate response. Allows prepending optional content to AI response. Adds messages and returns generated AIMessage.

Args

user_message
User message text.
ai_message_tbc
Optional text to prepend to AI response.
stop_at
Optional string to stop generation at.
include_stop_str
Whether to include stop string in generated message.
system_message
Optional system message to include at the start, not all models support this.

If you provide system message to a model that doesn't support it, it will be ignored. You can check if a model supports system messages by checking the model_data.has_system_messages()

Returns

Generated AIMessage object.

Raises

Exception
If no AI or messages loaded yet.
Expand source code
def generate(self,
          user_message: str,
          ai_message_tbc: Optional[str] = None,
          stop_at:Optional[str]=None,
          include_stop_str:bool=True,
          system_message: Optional[str] = None
          ) -> AIMessage:
    """
    Generate AI response to user message.

    Runs user message through loaded LlamaAI to generate response. Allows prepending optional 
    content to AI response. Adds messages and returns generated AIMessage.

    Args:
        user_message: User message text.
        ai_message_tbc: Optional text to prepend to AI response.
        stop_at: Optional string to stop generation at.
        include_stop_str: Whether to include stop string in generated message.
        system_message: Optional system message to include at the start, not all models support this.
        If you provide system message to a model that doesn't support it, it will be ignored.
        You can check if a model supports system messages by checking the model_data.has_system_messages()

    Returns:
        Generated AIMessage object.

    Raises:
        Exception: If no AI or messages loaded yet.
    """
    if self.ai is None:
        raise Exception("No AI loaded. Use load_ai() first.")
    if self.messages is None:
        raise Exception("No messages loaded. Use load_ai() first.")
    self.messages.reset_messages()
    if self.model_data.has_system_tags():
        if system_message is not None:
            self.messages.set_system_message(system_message)
        else:
            print("WARNING: Model supports system messages, but no system message provided.")
    self.messages.add_user_message(user_message)
    print(f"Input to model: \n{self.messages.text()}")
    generated: str = ""
    if ai_message_tbc is not None:
        generated += ai_message_tbc
        self.messages.add_message(ai_message_tbc, self.model_data.get_ai_tag_open(), "")
    if stop_at is None:
        stop_at = self.messages.ai_tag_close if any([self.messages.ai_tag_close is None, self.messages.ai_tag_close == "", self.messages.ai_tag_close != " "]) else None
        include_stop_str = False
    generated += self.ai.infer(self.messages.text(), only_string=True, stop_at_str=stop_at, include_stop_str=include_stop_str)
    if ai_message_tbc is not None:
        self.messages.edit_last_message(generated,
                                        self.model_data.get_ai_tag_open(),
                                        self.model_data.get_ai_tag_close())
    else:
        self.messages.add_ai_message(generated)
    print(f"AI message: \n{self.messages.get_last_message()}")
    return self.messages.get_last_message()
def import_from_repo(self, hf_repo_url: str, user_tags: Tuple[str, str] = ('', ''), ai_tags: Tuple[str, str] = ('', ''), system_tags: Optional[Tuple[str, str]] = (None, None), keywords: Optional[str] = None, description: Optional[str] = None, replace_existing: bool = False) ‑> None

Imports model data from HuggingFace model repo to current model DB.

Args

hf_repo_url
URL of model to import.
user_tags
User tags to assign to model data.
ai_tags
AI tags to assign to model data.
system_tags
System tags to assign to model data.
description
Optional description for model data.
keyword
Optional keyword for model data.
replace_existing
Whether to replace existing model data if found.

Raises

Exception
If no model DB loaded yet.
Expand source code
def import_from_repo(self, hf_repo_url: str, user_tags: Tuple[str, str] = ("", ""), ai_tags: Tuple[str, str] = ("", ""), system_tags: Optional[Tuple[str, str]] = (None, None), keywords: Optional[str] = None, description: Optional[str] = None, replace_existing: bool = False) -> None:
    """
    Imports model data from HuggingFace model repo to current model DB. 

    Args:
        hf_repo_url: URL of model to import.
        user_tags: User tags to assign to model data.
        ai_tags: AI tags to assign to model data.
        system_tags: System tags to assign to model data.
        description: Optional description for model data.
        keyword: Optional keyword for model data.
        replace_existing: Whether to replace existing model data if found.

    Raises:
        Exception: If no model DB loaded yet.
    """



    self.model_db.import_models_from_repo(
        hf_repo_url=hf_repo_url,
        user_tags=user_tags,
        ai_tags=ai_tags,
        system_tags=system_tags,
        keywords=keywords,
        description=description,
        replace_existing=replace_existing,
    )
def import_verified_models_to_db(self, model_name_quantization_list: Optional[list[typing.Union[list, set, tuple]]] = None) ‑> None

Import verified models to new ModelDB.

Imports verified models from global verified models DB to new ModelDB. If model_name_quantization_list is provided, only models in the list are imported.

Args

model_name_quantization_list
List of tuples of model name and quantization to import. If None, all models are imported.
Expand source code
def import_verified_models_to_db(self, model_name_quantization_list:Optional[list[Union[list,set,tuple]]] = None) -> None:
    """
    Import verified models to new ModelDB.

    Imports verified models from global verified models DB to new ModelDB. If model_name_quantization_list is provided, only models in the list are imported.

    Args:
        model_name_quantization_list: List of tuples of model name and quantization to import. If None, all models are imported.
    """
    if self.model_db is None:
        raise Exception("No model DB loaded. Use load_model_db() first.")
    if model_name_quantization_list is not None:
        for n_q_data in model_name_quantization_list:
            name = n_q_data[0]
            quantization = n_q_data[1]
            self.model_db.import_verified_model(name, quantization, None, True)
    else:
        self.model_db.import_verified_model(None, None, None, True)
def is_within_context(self, prompt: str) ‑> bool

Check if the generated message is within the input limit.

Args

user_message_text
User message text.
ai_message_tbc
Optional text to prepend.

Returns

True if within input limit, False otherwise.

Expand source code
def is_within_context(self,
    prompt: str,
    ) -> bool:
    """
    Check if the generated message is within the input limit.

    Args:
        user_message_text: User message text.
        ai_message_tbc: Optional text to prepend.

    Returns:
        True if within input limit, False otherwise.
    """
    return self.ai.is_prompt_within_limit(prompt)
def load_ai(self, max_total_tokens: int = 200) ‑> None

Load LlamaAI model from model data.

Downloads model file from model data URL if needed. Initializes LlamaAI with model and sets lai attribute.

Args

max_total_tokens
Max tokens for LlamaAI model.

Raises

Exception
If no model data or messages loaded yet.
Expand source code
def load_ai(self,
            max_total_tokens: int = 200,) -> None:
    """
    Load LlamaAI model from model data.

    Downloads model file from model data URL if needed. Initializes LlamaAI with model and sets lai attribute.

    Args:
        max_total_tokens: Max tokens for LlamaAI model.
    Raises:
        Exception: If no model data or messages loaded yet.
    """
    self._load_messages()
    if self.messages is None:
        raise Exception("No messages loaded. Use load_messages() first.")
    if self.model_data is None:
        raise Exception("No model data loaded. Use find_model_data(), get_model_data_from_url(), or get_model_data_from_file() first.")
    self.model_data.download_gguf()
    self.ai = LlamaAI(self.model_data.model_path(), max_tokens=max_total_tokens)
    print(f"Loaded: {self.model_data}")
def load_model_db(self, db_dir: Optional[str] = None, copy_verified_models=True) ‑> None

Load ModelDB from given directory.

Args

db_dir
Directory to load ModelDB from.
copy_examples
Whether to copy example GGUF files to db_dir if db_dir is empty.
Expand source code
def load_model_db(self, db_dir:Optional[str] = None, copy_verified_models=True) -> None:
    """
    Load ModelDB from given directory.

    Args:
        db_dir: Directory to load ModelDB from.
        copy_examples: Whether to copy example GGUF files to db_dir if db_dir is empty.
    """
    self.model_db = ModelDB(model_db_dir=db_dir, copy_verified_models=copy_verified_models)
def model_data_from_file(self, gguf_file_path: str, user_tags: Tuple[str, str] = ('', ''), ai_tags: Tuple[str, str] = ('', ''), description: Optional[str] = None, keyword: Optional[str] = None, save: bool = False) ‑> None

Get model data from local GGUF file.

Loads model data from the given local GGUF file path. Sets model data attribute.

Args

gguf_file_path
Path to GGUF file.
user_tags
User tags to assign to model data.
ai_tags
AI tags to assign to model data.
description
Optional description for model data.
keyword
Optional keyword for model data.
save
Whether to save model data JSON file.
Expand source code
def model_data_from_file(self,
                         gguf_file_path: str,
                         user_tags: Tuple[str, str] = ("", ""),
                         ai_tags: Tuple[str, str] = ("", ""),
                         description: Optional[str] = None,
                         keyword: Optional[str] = None,
                         save: bool = False) -> None:
    """
    Get model data from local GGUF file.

    Loads model data from the given local GGUF file path. Sets model data attribute.

    Args:
        gguf_file_path: Path to GGUF file.
        user_tags: User tags to assign to model data.
        ai_tags: AI tags to assign to model data.
        description: Optional description for model data.
        keyword: Optional keyword for model data.
        save: Whether to save model data JSON file.
    """
    if self.model_db is None:
        raise Exception("No model DB loaded. Use load_model_db() first.")
    model_data = ModelData.from_file(gguf_file_path, self.model_db.gguf_db_dir, user_tags, ai_tags, description, keyword)
    if save:
        model_data.save_json()
    self.model_data = model_data
def model_data_from_url(self, url: str, user_tags: Tuple[str, str] = ('', ''), ai_tags: Tuple[str, str] = ('', ''), description: Optional[str] = None, keywords: Optional[str] = None, save: bool = True) ‑> None

Get model data for URL, downloading model if needed.

Checks if model data already exists for the given URL. If not, downloads the model from the URL and creates new model data. Sets model data attribute.

Args

url
URL of model to get data for.
user_tags
User tags to assign if creating new model data.
ai_tags
AI tags to assign if creating new model data.
description
Optional description for new model data.
keyword
Optional keyword for new model data.
save
Whether to save new model data JSON file.
Expand source code
def model_data_from_url(self,
                        url: str,
                        user_tags: Tuple[str, str] = ("", ""),
                        ai_tags: Tuple[str, str] = ("", ""),
                        description: Optional[str] = None,
                        keywords: Optional[str] = None,
                        save: bool = True) -> None:
    """
    Get model data for URL, downloading model if needed.

    Checks if model data already exists for the given URL. If not, downloads
    the model from the URL and creates new model data. Sets model data attribute.

    Args:
        url: URL of model to get data for.
        user_tags: User tags to assign if creating new model data. 
        ai_tags: AI tags to assign if creating new model data.
        description: Optional description for new model data.
        keyword: Optional keyword for new model data.
        save: Whether to save new model data JSON file.
    """
    if self.model_db is None:
        raise Exception("No model DB loaded. Use load_model_db() first.")
    print(f"Trying to get model data from url: {url}")
    print(f"Checking if model data already exists...")
    model_data = self.model_db.get_model_by_url(url)
    if model_data is None:
        print(f"Model data not found. Creating new model data...")
        model_data = ModelData(url, self.model_db.gguf_db_dir, user_tags, ai_tags, description, keywords)
        print(f"Created model data: {model_data}")
    else:
        print(f"Found model data: {model_data}")
    if save:
        model_data.save_json()
    self.model_data = model_data